

MODIFIED PHASE ACCEPTANCE IN LINACS

S. C. Snowdon

December 10, 1970

Purpose

To extend the calculation presented by Gluckstern to obtain the phase width of the acceptance area of the synchronous energy.

Calculation

Gluckstern gives as the relation for the modified phase acceptance boundary:

$$y^{2}(x) = f(x) + \frac{5\epsilon}{2} \int_{x}^{2} y(u) du$$
 (1)

where

$$f(x) = (2 - x)^{2} (1 + x).$$
 (2)

His approximate analytical solutions do not cover the range x < -1.

To obtain these differentiate Eq. (1):

$$\left(2\frac{\mathrm{dy}}{\mathrm{dx}} + \frac{5}{2}\epsilon\right) y \triangleq f'(x). \tag{3}$$

Near y = 0 and x = -1 one expects that 2dy/dx is quite large compared with $5\epsilon/2$. Hence, in this range

$$2y\frac{dy}{dx} \cong f'(x) \tag{4}$$

or

^{*}Operated by Universities Research Association Inc. under contract with the United States Atomic Energy Commission.

$$y^2 = f(x) + constant. (5)$$

The constant may be calculated using Gluckstern's solution for x + -1. Thus,

$$y^{2}(x) = y^{2}(-1) + f(x).$$
 (6)

At the intercept y = 0 one has

$$(2-x)^{2}(1+x) = -y^{2}(-1) = -6 \ 3 \epsilon.$$
 (7)

To first order in € the left-hand intercept is

$$x = -1 - \frac{2\sqrt{3}}{3} \epsilon. \tag{8}$$

Gluckstern 1 gives x = 2 for the right-hand intercept. Hence the phase width at the synchronous energy is

$$\Delta \phi = \left[2 - \left(-1 - \frac{2\sqrt{3}}{3} \epsilon \right) \right] \cdot \left| \phi_{S} \right| . \tag{9}$$

or

$$\Delta \phi = \left(3 + \frac{2\sqrt{3}}{3} \ \epsilon\right) \cdot \left|\phi_{\rm S}\right| . \tag{10}$$

Results

Gluckstern¹ gives

$$\epsilon \approx 0.83 \sqrt{\frac{\Delta \beta}{\beta_{\rm S}^{\rm i} |\phi_{\rm S}|}}$$
(11)

where $\Delta \beta$ is the change in β per cell near injection. Using a

PARMILA run, one finds

$$\Delta \beta = 0.0015$$
 (12) $\beta_{S}^{i} = 0.0413$ $\phi_{S} = -32^{\circ}$.

Thus,

$$\mathbf{\varepsilon} = \mathbf{0.21} \tag{13}$$

and

$$\Delta \phi = 103.76^{\circ}. \tag{14}$$

Correction to Account for Proper Initial Bucket Width

Gluckstern¹ approximates the initial bucket width as $\Delta \phi = 3 |\phi_{\rm S}|$. To remove this approximation, one needs to employ the theory of Symon and Sessler.² For $\phi_{\rm S} = -32^{\circ}$ (Symon and Sessler use $90^{\circ} - 32^{\circ} = 58^{\circ}$) the initial bucket width is

$$\Delta \phi = 122^{\circ} - 24.93^{\circ} = 97.07^{\circ} \tag{15}$$

which is to be compared with the approximate value used by Gluckstern.

$$\Delta \phi = 3 \times 32^{\circ} = 96^{\circ}.$$
 (16)

Hence, a correction of 97.07 - 96° = 1.07° should be added to Gluckstern's estimate of the bucket width. Thus, for $\phi_{\rm S}$ = -32°

$$\Delta \phi = 103.76 + 1.07 = 104.83^{\circ}. \tag{17}$$

REFERENCES

- ¹R. L. Gluckstern, Phase Acceptance in Linacs, Proceedings 6th International Conference on High Energy Accelerators, Cambridge (1967), p. 153; see also, <u>Linear Accelerators</u>, P. M. Lapostolle and A. L. Septier, Editors; North Holland Publishing Company, Amsterdam (1970), p. 797.
- ²K. R. Symon and A. M. Sessler, Methods of Radio Frequency
 Acceleration in Fixed Field Accelerators with Applications to
 High Current and Intersecting Beam Accelerators, MURA-106
 (1956). For numerical evaluations, see I. Gumowski, CPS
 RF-Bucket, Width, Height, and Area, CERN MPS/Int. RF 67-1.